视觉惯性进程(VIO)是当今大多数AR/VR和自主机器人系统的姿势估计主链,无论是学术界和工业的。但是,这些系统对关键参数的初始化高度敏感,例如传感器偏见,重力方向和度量标准。在实际场景中,很少满足高parallax或可变加速度假设(例如,悬停空中机器人,智能手机AR用户不使用电话打手机的智能手机AR),经典的视觉惯性初始化配方通常会变得不良条件和/或未能有意义地融合。在本文中,我们专门针对这些低兴奋的场景针对野生用法至关重要的视觉惯性初始化。我们建议通过将新的基于学习的测量作为高级输入来规避经典视觉惯性结构(SFM)初始化的局限性。我们利用学到的单眼深度图像(单深度)来限制特征的相对深度,并通过共同优化其尺度和偏移来将单深度升级到度量标尺。我们的实验显示出与视觉惯性初始化的经典配方相比,问题条件有显着改善,并且相对于公共基准的最先进,尤其是在低兴奋的情况下,相对于最先进的表现,具有显着的准确性和鲁棒性提高。我们进一步将这种改进扩展到现有的探射系统中的实现,以说明我们改进的初始化方法对产生跟踪轨迹的影响。
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译
在构图上概括的能力是理解只能用有限数量的单词以人类语言构建的潜在无限句子数量的关键。研究NLP模型是否具有这种能力一直是一个有趣的话题:Scan(Lake and Baroni,2018)是专门针对该物业测试的一项任务。先前的工作已经使用群体等级的神经网络实现了令人印象深刻的经验结果,该神经网络自然编码了扫描的有用感应偏置(Gordon等,2020)。受此启发,我们引入了一种新型的团体等级架构,该结构结合了一个组不变的硬对准机制。我们发现,与现有的群体等级方法相比,我们的网络结构使其能够开发出更强的白毒属性。我们还发现,在扫描任务上,它的表现优于先前的群体等级网络。我们的结果表明,将群体等级性整合到各种神经体系结构中是一种潜在的研究途径,并证明了对此类架构的理论特性进行仔细分析的价值。
translated by 谷歌翻译
大气效应(例如湍流和背景热噪声)抑制了在开关键控自由空间光学通信中使用的相干光的传播。在这里,我们介绍并实验验证了卷积神经网络,以降低后处理中自由空间光学通信的位错误率,而自由空间光学通信的位比基于高级光学器件的现有解决方案明显简单,更便宜。我们的方法由两个神经网络组成,这是第一个确定在热噪声和湍流中存在相干位序列以及第二个解调相干位序列的存在。通过生成连贯的光线,将它们与热灯结合在一起,并通过湍流的水箱将其结合起来,通过生成开关的键入键流,可以通过实验获得我们网络的所有数据,从而获得了模拟的湍流,并将其传递给了最终的光线。高度准确性。我们的卷积神经网络提高了与阈值分类方案相比的检测准确性,并具有与当前解调和误差校正方案集成的能力。
translated by 谷歌翻译
线虫秀丽隐杆线虫(秀丽隐杆线虫)被用作模型生物体,以更好地了解发育生物学和神经生物学。秀丽隐杆线虫具有不变的细胞谱系,已使用荧光显微镜图像进行了分类和观察。然而,一旦开始零星的肌肉抽搐,已建立的跟踪细胞的方法就无法概括。我们以方法为基础,该方法将皮肤细胞用作基准标记,尽管随机抽搐,但仍在进行细胞跟踪。特别是,我们提出了一个细胞核分割和跟踪程序,该过程被整合到3D渲染GUI中,以提高在晚期发育过程中跟踪细胞的效率。在三个测试胚胎上描述上述肌肉细胞核的图像上的结果表明,基准标记与经典的跟踪范式结合使用,克服了零星的抽搐。
translated by 谷歌翻译
这项工作介绍了使用伪层作为费米子决定因素的随机估计量的费米子晶状体理论中基于流动采样的量规均值架构。这是最先进的晶格场理论计算中的默认方法,这使得对流向模型在QCD等理论的实际应用至关重要。还概述了通过标准技术(例如/奇数预处理和HasenBusch分解)来改进基于流的采样方法的方法。提供了二维U(1)和SU(3)具有$ n_f = 2 $ FERMIONS的量规理论的数值演示。
translated by 谷歌翻译
建模相互依存的关键基础架构的恢复是量化和优化社会弹性对破坏性事件的关键组成部分。但是,在随机破坏事件下模拟大规模相互依赖系统的恢复在计算上是昂贵的。因此,我们建议在本文中应用深度运算符网络(DeepOnets),以加速相互依赖系统的恢复模型。 DeepOnets是ML架构,可从数据中识别数学运算符。管理方程式的形式deponets标识和相互依赖系统恢复模型的管理方程相似。因此,我们假设deponets可以通过很少的培训数据有效地对相互依存的系统恢复进行建模。我们将deponets应用于具有十六个状态的四个相互依存系统的简单情况。总体而言,Deponets在预测这些相互依存的系统在与参考结果相比的训练样本数据中的恢复方面表现令人满意。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译